Self-organizing maps and symbolic data
نویسندگان
چکیده
In data analysis new forms of complex data have to be considered like for example (symbolic data, functional data, web data, trees, SQL query and multimedia data,. . . ). In this context classical data analysis for knowledge discovery based on calculating the center of gravity can not be used because input are not Rp vectors. In this paper, we present an application on real world symbolic data using the self-organizing map. To this end, we propose an extension of the self-organizing map that can handle symbolic data.
منابع مشابه
Processing Symbolic Data With Self-Organizing Maps
Current research on machine learning and related algorithms is focused mainly on numeric paradigms. It is, however, widely supposed that intelligent behavior strongly relies on ability to manipulate symbols. In this paper we present on-line versions of self-organizing maps for symbol strings. The underlying key concepts are average and similarity, applied on strings. These concepts are easily d...
متن کاملData Mining and Knowledge Discovery with Emergent Self-Organizing Feature Maps for Multivariate Time Series
Self-Organizing Feature Maps, when used appropriately, can exhibit emergent phenomena. SOFM with only few neurons limit this ability, therefore Emergent Feature Maps need to have thousands of neu-rons. The structures of Emergent Feature Maps can be visualized using U-Matrix Methods. U-Matrices lead to the construction of self-organzing classiiers possessing the ability to classify new datapoint...
متن کاملGreen Product Consumers Segmentation Using Self-Organizing Maps in Iran
This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملSelf-organizing Acoustic Categories in Sensor Arrays
In this paper, we explore the emergence of acoustic categories in sensor arrays. We describe a series experiments on the automatic categorization of species and individual birds using self-organizing maps. Experimental results showed that meaningful acoustic categories can arise as self-organizing processes in sensor arrays. In addition, we discuss how distributed categorization could be used f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0709.3587 شماره
صفحات -
تاریخ انتشار 2004